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'BRIEF OUTLINE OF RESEARCH FINDINGS

This final report summarizes the work on ARO Grant Number
DAAG29-79-C-0082 from 1 May 1979 to 30 October 1982, The purpose of
this grant is to develop theory and techniques for small antennas
mounted on structures, for microstrip antennas, and for k-pulse
applications,

Much of the research effort during this period is described in the
published papers which are reproduced in the Appendices.

First let us summarize our accomplishments related to small
antennas mounted on structures,

The theory and computer programs were developed for plane-wave
scattering by an infinitely long elliptic cylinder with arbitrary
suyrface impedance. The solution has the form of a series of Mathieu
functions. The calculated data show excellent agreement with GTD
calculations.

We investigated the characteristic modes of Garbacz and Harrington
for conducting strips, strip gratings, thick tubular dipoles, and
periodic collinear arrays of thick tubular dipoles. For the conducti;g
strip, it was found the characteristic modes coincide with the
eigenmodes of the degenerate elliptic cylinder expressed in terms of
Mathieu functions. For periodic structures such as the strip grating
and the collinear array of dipoles, when the spacing is less than the

wavelength, a single characteristic mode fs induced by a plane wave with

normal incidence.
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In most applications it is difficult to obtain more than three or
four of the characteristic modes. In the complex frequency domain, new
techniques are required for characteristic modes since the impedance
matrix is no longer positive definite., For these reasons, we
investigated the conjugate modes of Inagaki. Even in the complex
frequency domain, it is always easy to obtain a complete set of
conjugate modes. We found that the conjugate modes reduce to the
natural modes at the poles of the conducting body. For the strip and
the tubular dipole, graphs were plotted to illustrate the lowest-order
characteristic modes and the conjugate modes,

We applied the double Fourier transform to develop the theory of
thin-wire and thin-strip antennas located on or near the air-earth
interface. Previous fnvestigators have used the Fourier-Bessel
transform for fhese problems, but the double Fourier transform has
significant advantages, For a thin-strip antenna near the air-earth
interface, our technique requires double numerical integration whereas
the earlier methods require five-fold numerical integration. The
Fourier-Bessel method encounters a singularity when the antenna is on
the interface, but the double Fourier transform technique is well
behaved in this situation.

Next, we applied the double Fourier transform to calculate the
current distribution and impedance of a horizontal strip dipole as a
function of distance from the air-earth interface. The calculations
include the cases where the dipole is on the interface, buried in the

earth, and elevated above the interface. Although the impedance varies
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rapidly with distance when the dipole is near the interface, it appears
that the impedance is continuous across the interface.

We also considered a skewed strip dipole near the air-earth
interface. The skewed dipole is neither vertical nor horizontal, but is
oriented at an arbitrary angle with respect to the interface. The
double Fourier transform proved quite advantageous for this application.
With this approach, the number of Sommerfeld-integral evaluations is
reduced by a factor of ten in comparison with the conventional Fourier-
Bessel transformation.

Next let us summarize our research accomplishments related to
microstrip antennas.

We applied the double Fourier transform to develop the theory of
microstrip antennas. In calculating the self impedance of a rectangular
microstrip antenna, our new computer code reduces the computational
expense by a factor of ten.

In many applications, the patch model of a microstrip antenna will
involve trapezoidal patches. Therefore, we considered the mutual
impedance of two trapezoidal patches and developed the theory far enough
to show that the transform approach is quite feasible for this
application.

Finally, let us summarize our research related to k-pulse
applications. We extended the k-pulse theory to include the effects of
the generator impedance at the transmitting antenna and the load
impedance at the receiving antenna. For numerical calculations, we

considered two center-fed cylindrical-wire antennas with the following

A A o T g S




generator and load impedances: 0, 50, 916, and = ohms., We used the
frequency-domain moment method to calculate the antenna impedance and
effective length at many frequencies. The effective length was
calculated for broadside incidence and also for an angle of 45 degrees
away from broadside. From these data we employed the Fourier transform

to calculate the following k-pulse waveforms: the generator voltage

vg(t), the incident far-zone field waveform Ej(t), and the received
voltage waveform vpa(t). A manuscript is being prepared to present these

new results,
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APPENDIX A
MUTUAL IMPEDANCE BETWEEN VERTICAL DIPOLES OVER A FLAT FARTH




Radio Science, Volume 14, Number 6, pages 957-959, November-December (979

Mutual impedance between vertical dipoles over a flat earth

J. H. Richmond and E. H. Newman

The Ohio State University ElectroScience Laboratory, Depariment of Electrical Engineering, Columbus, Ohio 43212

{Received January 23, 1979; revised July 11, 1979))

The fields of a vertical dipole and the mutual impedance between vertical dipoles over a flat
carth are expressed in terms of a Sommerfeld integral.

{. INTRODUCTION

The use of vertical wire antennas, or arrays of
vertical wires, over the earth is common. This
problem can be analyzed by using the method of
moments [Harrington, 1968], where the effects of
the flat earth are accounted for by modifying each
element in the impedance matrix. The computation
of the modification to a single element in the matrix
involves the numerical evaluation of a Sommerfeld
integral [Sommerfeld, 1964] . With sinusoidal bases
and point matching, it has been shown [Miller et
al., 1972] that a single evaluation of the Sommerfeld
integral suffices for each impedance element. Miller
et al. report a computation time of 20 s on a
CDC-6600 computer for impedance of a vertical
half-wave dipole over the flat earth. In view of
this computational expense, they present data based
on a S-segment antenna model, although these data
differ by 8% from those with a 21-segment model.
They present the theory based on enforcement of
the integral equation on the axis of the wire.

In this paper we present the general formulation
and show that a single evaluation of the Sommerfeld
integral suffices for almost any choice of basis and
testing functions. Instead of matching on the axis,
we present the theory appropriate for enforcement
of the integral equation on the surface of the wire.
More accurate data are presented for the impedance
of a center-fed vertical wire versus height above
the earth, and it is found that our calculations are
significantly faster than those quoted above.

2. FIELD OF VERTICAL DIPOLE

For an elcctric line source located on the z axis
in free space the vector potential has only a 2
component given by

Copynght © 1979 by the Amencan Geophysical Union.
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where z] and z; denote the end points of the line
source and /(z’) represents the current distribution
with the time dependence e’* suppressed.

By expanding the spherical wave exp (~jkR)/R
in a spectrum of cylindrical waves, we obtain

L . F vz
4= S BUuBe) 2" 4p @
0 dmy
v =B~k 3)
F(v)= S 1(zYe " dz’ @

where z is less than z{. The electric field intensity
is given by

1 [, a4
E,=— kA +— .
Jwe a9z
E, = CS B’ Jo(BoXF/v)e™ dPB ()
1]

where C = —jn/(4nk) and m is the impedance
of free space.

Now let the xy plane be the air-earth interface.
With the field in (6) incident on the interface the
reflected ficld is given by

E = CS B’ RJ,BpXF/y)e ™ dp M
[+]
where the reflection coefficient R is a function of
y and (he parameters of the earth; (p, &, z) denote
cylindrical coordinates with origin on the interface
and linc source on the 2 axis.

Now consider a tubular vertical dipole with radius

‘a,’ current distribution 7(z"), and surface current
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958 RICHMOND AND NEWMAN

density uniformly distributed around the tube. The
reflected field for this source is found from (7)
by using the addition theorem for the Bessel function
and integrating around the surface of the tube:

=C X B’RJy(Ba)J,BoXF/v)e ™ dB  (8)
(]

where p is measured from the axis of the tubular

source.

3. MUTUAL IMPEDANCE OF VERTICAL DIPOLES

The mutual impedancc between tubular vertical
dipoles is given by

1
Z,= 'TI: S S LE, ds )

I, and I, denote the terminal currents, and the
integration extends over the cylindrical surface of
dipole 2. Dipole 2 has radius a,, current distribution
I,(z), and uniform surface current density J, around
the tube. The z component of the field of dipole
1 is given by

E,=E)+E; (10)

where the first term denotes the free-space field
and the second term is the field reflected from
the interface. From (9) and (10),

z,=2,+2), an

where the first term is the mutual impedance in
free space and the second term is the change in
mutual impedance arising from interface reflection.

Using (8) for the reflected field, invoking the
addition theorem, and integrating around the surface
of dipole 2, we find

c (-
zZ,= T S B (R/v)

192 1]

- Jo(Ba,)Jo(Ba,) o (Bd) FG dB (12)

G(y) = S L(2)e ™ dz 13)

]

The horizontal distance between the dipole axes
is denoted by d, and z, and 2, are the end points
of dipole 2.

In moment method applications the current dis-
tributions 7_,(z') and /,(2) represent the basis func-
tions, and (12) determines Z; ,. For any simple
basis functions it is apparent from (4) and (13) that

the functions F and G can be obtained in simple
closed form. Thus we see from (12) that a single
evaluation of the Sommerfeld integral is sufficient
to calculate each of the mutual impedance terms
Z’ .. In the sinusoidal Galerkin formulation the
basis and testing functions are

sink(h, — |2’ - z.))

1.(2") = 14

@) sin kh,, a4
sink(h, - |z~ 2,

L(z)= 15

@) sin kh, as

where h_ and &, denote the segment lengths. Func-
tion m extends over the two segments which inter-
sect at z_, and function n extends over the two
segments which intersect at z,.

4. NUMERICAL RESULTS

Figure 1 illustrates the impedance of a half-wave
center-fed vertical wire. Here A denotes the distance
from the air-earth interface to the center of the
wire. These data were calculated with the sinusoidal
Galerkin formulation. The wire was divided into
30 segments, so there were 29 equations and 29
unknowns. In Figure 1 the trends are similar to

Mo r—T1—T— T T T T T T T

L FREQUENCY . 3 MMz
WIRE LENGTH : 0.5\
WIRE RADIUS o=5x10-%)

RESISTANCE

PARAMETERS OF THE EARTH
€ 10
@ = 0.003 mho /m

IMPEDANCE ( OHMS )
8
T
|

3
T
1

4o~ REACTANCE
B I T TS T SO N IO T
0.25 0.30 035

HEIGHT ABOVE EARTH h/)

Fig. |. Impedance of center-fed vertical wire versus height
ahove the carth.
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those in Figure 2 of Miller et al. {1972], but the
data agree more closely with their 21-segment results
rather than the S-segment results they present.

If the 20-s computation time quoted by Miller
et al. applies to their S-segment model, our corres-
ponding 6-segment calculations are 100 times faster.
If it applies to their 2]1-segment model, our 22-seg-
ment calculations are 12 times faster. We employed
a simple Newton-Cotes integration as opposed to
their adaptive integration for the Sommerfeld inte-
gral. In addition, our free-space impedance terms
Z° _ are in simple closed form, whereas theirs may
require numerical integration.

Surface matching is stower than axis matching,
and the two techniques give essentially the same
results for wires with small radius as in Figure 1.
For larger radii such as the often quoted results

10

for a = 0.007 A\, however, surface matching is
required for accurate results and, indeed, for con-
vergence.

Acknowledgment. The work reported in this paper was
supported in part by contract DAAG29-79-C-0082 between the
Department of the Army, U.S. Army Research Office, and
The Ohio State University Research Foundation.
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On the Edge Mode in the Theory of TM Scattering by a Strip or Strip Grating

JACK H. RICHMOND. irL1.0w, btk

Abstraci—Consider a plane wave incident on a perfectly conducting
strip (or strip, '3~ 8), and let the incident ¢lectric vector be parallel
with the edges vi tire strip. If the edge mode is included among the
basis functions, it is found this greatly improves the convergence of
the moment-method solution. Numerical data are included for the
reflection coefficient of the strip grating. To correct an error in the
previous literature, the rigorous solution is tabulated for broadsid
backscatter from a single strip.

1. INTRODUCTION

IBLIOGRAPHIES on strip gratings are available in {1]
and (21, and a chapter on scattering by a strip is included

in {3]. For a related geometry, Minor and Bolie [4] include
the edge modes in an efficient formulation for shielded micro-
strip. In scattering by a strip, Shafai and El-Moazzen | 5] use
a transformation to treat the edge singularities in the current
distribution. Tsai er al. [6] sainple the current function at
progressively smaller intervals near the edge. Wilton and
Govind [7] incorporate the edge conditions with subsectional
bases. In (6] and (7], the objective is to obtain more accurate
calculations of the current distribution. Their techniques
evidently Jdid not improve the convergence of the solution.
In this paper we develop the theory of scattering for a
strip and a strip grating. When the basis functions include the
edge mode, it is shown this greatly improves the convergence
of the moment-method solution with entire-domain expansion
functions. For a strip with width equal to the wavelength,

Manuscript seccived November 26, 1979; revised May 27, 1980
This work was suppotted in part by Contract DAAG29-79L-0082 be-
tween Department of the Army, UL.S. Army Research Office, and the
Ohio State University Research I oundation.

The author is with the ElectroScience Laboratory, The Ohio State
University, Columbus, OH 43212,

our calculations with three unknowns show excellent agree-
ment with the current distribution obtained in {7] with 25
unknowns. For a strip grating with normal incidence and
spacing less than the wavelength, it is found the current
distribution has the constant phase property of a character-
istic mode (8], (9].

Although our technique shows scme similarity to the
“asymptolic anticipation method’ of Neureuther and Zaki
{15], we introduce several improvements. In their discus-
sion of plane wave scattering by a wire mesh, Hill and Wait
{161 use related techniques to improve the convergence.

We consider a grating or a strip with perfect conductivity,
infinite length, and infinitesimal thickness. The time de-
pendence ¢’ is assumed and suppressed. At first the cur-
rent density on the strip is expanded in a Fourier series, and
a system of simultaneous linear equations is developed for the
Fourier coefficients. Then the current distribution is expressed
as the sum of an edge mode plus a Fourier series, and it is
found that the simultaneous linear equations can be obtained
readily from the previous cexpressions. The next section
considers a strip grating with oblique incidence, but for the
sake of brevity the remainder of the paper considers normal
incidence.

1. THEORY OF STRIP GRATING WITH OBLIQUE
INCIDENCE

Consider a time-harmonic plane wave in free space to have
ohlique incidence on a periodic planar array of thin con-
ducting strips as in Fig. 1. Each strip has width w = 2h and s
denotes the spacing. The = axis coincides with the axis of
one of the strips. and the incident clectric ficld intensity is

l..'J = 2h-°(']klcl)lo cf‘)'l‘no (l)

0018-926X/80/1100 OXR3300.75 © 1980 ILFE
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f“"" fo—s —f of simultaneous linear equations:
Y bZu=V, i=0,tl,%2, -, (12)
1
¢
ikn
& 3 Zjy=" E Fin*FinlYn 13)
) 2sw

Fig. 1. Plane wave with oblique incidence on strip grating.

where k = w\/;Te- The scattered field is

B = iEoelky‘i“° E ane—v..lxlei?n-y/: Q)

”y’ = — E_oin_(:) efkysing z anYne” Tnlxl iznny/s 3)
jwu —

Yn? = (k sin ¢ + 2nn/s)? — k2. )

where sgn (x) = -1 forx <0, and +1 forx > 0.
Let us expand the surface-current density on the strips
in a Fourier series:

J= zefkysin oz L7 )

From the boundary condition on tangential 4,

Eozan'fn’n"'yh
—10.5kn b, —h<y<n
= (6)
0, in the apertures

where n = \/u/e. We multiply both sides of (6) by e~ /27"»/$
and integrate over the region ~3/2 <y <s/2 to obtain

: a9 = —nwbo/(2sEq cos ¢) 1
- —jkn
an="—"""—2, biF} (8)
. 2s7nEo z "
"
P . F[” = / elza(l/w—n/l)y dy. (9)
. —h
!
i By forcing tangential £ to vanish on the conducting strips, we
obtain from (1) and (2)
.-
| Zane/P" 2m1, —h<y<h, (10)

We multiply both sides of (10) by e~ #"7/" a4 integrate
over the region -h <y < h to obtain

Py

) ZGF .o —w, ifi=0 "
}' nin 0, ifi#0 )

where an asterisk denotes the complex conjugate and Fy, is
defined by (9). In (11) let us replace 4,, with the equivalent
quantity from (7) and (8). This yields the following system

where V; = 0 except Vo = Eg.
The reflection and transinission coefficients of the strip
grating are given by

R =ag (14)
T=1+R. (1s)

To obtain numerical data, we truncate the series in (12) and
use matrix inversion to solve these equations for the constants
b;. In view of the basis and testing functions used, (12) and
(13) may be considered the **Fourier-Galerkin formulation.”

We usually expect the Galerkin formulation to converge
faster than a point-matching solution. In this application,
however, the two techniques show equal performance. The
only advantage of the Galerkin method is that it yields a sym-
metric matrix Z;. It is, however, a distinct advantage to treat
the constants b; as the unknowns in (12), rather than using
the a, as the unknowns asin [15].

III. STRIP GRATING WITH NORMAL INCIDENCE

For normal incidence (¢ = 0), it is convenient to express
the scattered field as

ES=:E, 2 ane” %1 cos (2nmy/s) (16)
)

and the current density as

N
J=3 E by cos (Imy/h). amn
°

By enforcing the boundary condition on tangential // (with
testing function cos 2nny/s). we find *

—Jjknwe, Y
ay = ———— b,G 18
n -"'YnEO 20: “in ( )
h
Gin = (/W) [ cos (lay/h) cos (2nmy/s) dy 19)
0

where ¢, = 2 except ¢y = |. By forcing tangential £ to vanish
on the strips we find

Ea,. cos (2nmy/s) = —1, —h<y<h, (20)
o

Multiplying (20) by cos imv/h and integrating over the range
0<y <hyields

24(‘ |05 iti=0 : o
r - -
no " 0. ifi#0.
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From (18) and (21),
N
Z biZy=V, i=0,1,2,"N 22)
=0
Zy = Qknw/s) 2y €nGinGinltn (23)
n=0

where V; = 0 except Vo = Eg. The impedance matrix Z; is
symmetric. The reflection coefficient is given by R = 4, and
ag and bg are related by (7).

If the incident field is

Ei= 2EqeYm* cos (2mny/s),

the solution is given by (16)-(19) and (22)—(23) with
Vi=2EoG.

IV. STRIP GRATING WITH EDGE MODE

The current distribution J(y) has singularities at the edges
of a strip. Thus, when J is expressed as a Fourier series, the
series has slow convergence and one must invert a rather
large matrix to obtain an accurate solution. To improve the
situation, we may express J as the sum of an edge mode (to
take care of the singularities) and a Fourier series. In this
case the Fourier series should converge rapidly since it repre-
sents a well-behaved function.

For normal incidence, a suitable edge mode for the current
distribution on a strip is

2
Je =W, T
Gl =Gy @
Je=Ue/w) 2 edo(in) cos (tny/h) (25)
0

h
1, = / Je()’)dy (26)

- h

where Jo(Im) denotes the Bessel function. The function J, has
the correct behavior in the neighborhood of each edge of the
strip.

For normal incidence, let us express the current density
on the strip as the sum of the edge mode and a Fourier series:

N--1

Je=Je+ 2 cos (iny/h). (27
0

Using (25) for J, and comparing (17) and (27), we find

by = ¢, + (Ie/w)erJo(im). (28)

From (22) and (28),

- N
N 2 edo(MZy+ X 2y =V, (29)
=9 1-0

where ¢ = I, /w denotes the amplitude of the ¢dge mode.
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tquation (29) can be rearranged as follows:

N

aZi'=Vi i=0,1,2, N (30)
1=0 .
Z,-"=Z", fOl’l<N (3])
Zn'= E emJo(mn)Z;y, 32)

m=0

where Z;; and Z;,, are given by (23) and V; = 0 except Vo =
Eo. The matrix Z;;' is not symmetric.

We could obtain a symmetric matrix by using the edge
mode (instead of the last cosine term) as a testing function
with (20) to derive the last equation (i = N) in (30). In this
case Zym = Zun and V; = 0 except Vg = Vy = Eg. How-
ever, slightly better convcrgence'is obtained with the unsym-
metric system in (30)-(32).

V. SINGLE STRIP WITH NORMAL INCIDENCE

When a plane wave has normal incidence on a single strip,
the scattered field can be expressed as follows:

ES = iE, ] A cos gye~ 1%l gg 33)
(1]
—E, sgn (x -
H, = —o—.-—-—) [ ¥4 cos gye~ "1 ag (34)
jkn 0
v =g® — k2. (35)

Let us express the current density on the strip as a Fourier
series:

N
J =3 X by cos (iny/h). (36)
()

(The edge mode will be introduced later.) The boundary con-
dition on tangential // leads to

+

/o YA cos gy dg

N

—(0.5jkn/kq) Dobscos (Imy/h), —h<yp<h
0

0, h<|vl.

3"

Multiplying both sides of (37) by cos gy and integrating both
sides over the range 0 <y < oo, we obtain

—rknw i
A=—=- 2 bG 38
vt ; 16 (38)
h .
G = (|/w)/ cos (Inv/h) cos (gv) dy. (39)
(]
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The boundary condition on tangential £ leads to
/ Acosgydg=—1, —h<y<h. (40)
(1}

Multiply (40) by cos (iny/h) and integrate over the range
0 <y < h to obtain

/—AGd _]-os, ifi=0 @)
LT, ifi#0.
From (38) and (41),
N
2 biZy=V; 42)
=0
Zu=(2ikﬂwl7')/ (GiGyfv)ds (43)
o

where V; = 0 except Vo = Eq.

Now let us express the current density on the strip as the
sum of the edge mode and a Fourier series as in (27). Once
again we obtain (30)-(32) with Z;; given by (43).

By integrating the current density across the strip, it is
found the current is / = wbg = weg + wepy. In the broadside
direction (¢ = 0) the scattered far-zone ficld is

2j R
£t == Genl/4) /;';e""". (@4)

For normal incidence, the backscatter echo width is
kznz ',|2A

We = 2mp | E*1/ | Eq | = ——;- -
‘ o 8w | Ep |2

4s)

V1. NUMERICAL RESIILTS

Fig. 2 illustrates the reflection coefficient versus spacing
for a strip grating with normal incidence. When the spacing is
less than the wavelength, these data show satisfactory agree-
ment with the measurements of Primich [10] and the formu-
las of Marcuvitz [11].

Fig. 3 shows the convergence properties of our calculations
with (22) and (30). For numerical calculations the series in
(32) is truncated after M terms, and best results are obtained
if M is greater than N in (30). Good results are obtained with
M=20and N=5for0<w/A<0S50rN =10for0.5<
wih< 1.

Accurate current distributions are not obtained when J is
expressed as a Fourier series as in Section Il Suppose, (or
example, we choose N = 20 in (17) and (22). Then we find
the calculated current distribution has 20 pronounced rip-
ples across the strip. These false ripples are not observed with
the edge-mode formulation in Section 1V,

For 3 strip grating with normal incidence and spacing s
less than A, it is found the current distribution J(») has con-
stant phase. Although the magnitude of J varies across the
strip, the phase of J is precisely uniform. This is observed
for all values of the strip width w. Thus J(v) qualifies as o
“characteristic mode” (8], [9] of the grating. since this
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Fig. 2. Reflection coefficient of perfectly conducting strip grating
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Fig. 3. Convergence curve for reflection coefficicnt of strip grating
with normal incidence.

current distribution generates an electric field which also has
constant phuse across the strip. When the spacing exceeds A,
the phase of J is no longer constant.

When the strip width is just slightly smaller than the spac-
ing, it is found the calculated current density J approaches the
physical optics approximation J = 2 /I'. With the edge mode
formulation of Section IV, good results are obtained even
with large spacing such as s = 20\ ors = SOX. When the spac-
ing is large, the calculated reflection coefficient agrees closely
with the physical optics approximation R = w/s.

Fig. 4 illustrates the backscatter echo width of a single
strip with broadside incidence. The moment method (Section
V) shows excellent agreement with the rigorous solution.
FFig. § shows the convergence properties of our calculations.

Macrakis {12] presents the rigorous solution for the strip
in terms of Mathicu functions. We used the Mathicu sub-
routines of Hodge [13]) to tabulate the ngorous data n
Fip. 4 and Table 1. Our rigorous data agree with those of
Macrakis in the range 0.318 < w/A < 0.955 where tabulated
Mathicu functions were avinlable to him. However, our Jdata -
ditfer greatly from his (and from the “exact™ data of King
and Wu [ 1] in the region w/A < 9.2 For narrow stnps
with w/X < 0.1, our data agree with caleulations based on the
cquivalent round wite with radius @ = w/d (rather thang =
widasusedn [12] and {14).

With cntire basis funcuions, convergence greatly improves
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when the edge mode is included among the basis functions.
It remains to be seen whether similar improvement can be

0 1T TTTTTT obtained with subsectional bases or with three-dimensional
.f" T 1 1 v 3 scattering geometries such as the rectangular plate.
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On the Edge Mode in the Theory of Thick Cylindrical
Monopole Antennas

JACK H. RICHMOND, FELLOW, IEEE

Abstract—The Fourier transform is employed to develop the theory
of thick cylindrical monopole antennas. The tubular monopole with an
3 open end is considered as well as the solid monopole with a fiat end.
The unknown current or field distribution is expunded in a Fourier
series, and Galerkin's method is employed to develop simultaneous
equations for the Fourier coefficients. When the edge mode is included
among the basis functions, it is found this greatly improves the
convergence of the moment-method calculations. Numerical data are
included, showing excellent agreement with experimental measure-
ments of the monopole admittance.

I. INTRODUCTION

Einarsson [1] presents solutions for tubular and solid cylin-
drical-wire antennas. These solutions are based on a delta-gap
model of the generator and thus are not suitable for calcu-
lating the susceptance. This objection applies also to the for-
mulations of Chang [2] and King and Wu [3]. Otto [4] em-
ploys a realistic magnetic-frill model for the generator and
reduces Einarsson’s formulation to one equation with one
unknown (rather than eight simultaneous equations). It has
not been demonstrated that Otto's approximations are appli-
cable to electrically thick antennas, however.

Chang [S] presents a moment-method solution for the
thick tubular monopole bascd on Hallen’s integral equation
with an extra term corresponding to a radially extended source
in the aperture of the coaxial feed cable. Thus an excellent
solution is available for the thick tubular antenna, but evi-
dently not for the thick solid cylindrical antenna.

King (11) presents measurcd admittances of thick mono-
poles, theoretical results for thick tubular monopoles, and a
correction term for higher order modes in the coaxial feed
line.

In this communication we present moment-method solu-
tions for tubular and solid cylindrical antennas. In comparison
with previous formulations, ours arc straightforward. It is
demonstrated that the convergence of the solution is greatly
improved when the edge mode is included among the basis

Manuscript received January 3, 1980; revised April 29, 1980. This
work was supported in part by Contract DAAG29-79-L0082 between
the Army Rescarch Office and the Ohio State University Research
Foundation,

The author is with the FlectroScience Laboratory, Department of
Electrical Lngineering, the Ohio State University, Columbus, O11 43212,
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functions. Numerical resuits are included, showing cxcellent
agreement between the calculated and measured admittances.

A periodic collinear array of cylindrical wires is considered
briefly. When the incident field is independent of the coordi-
nates ¢ and z, an interesting property is observed. [For all
values of the wire radiug ¢, the wire length L oand the -~ pacing
s (with s < A), the induced current distribution 7(2) has pre-
cisely constant phase (i.e., the phase is independent of z).
The electric field generated by this current also has constant
phase over the cylindrical surface. Thus the solution qualifies
as a “characteristic mode™ as defined by Garbacz (6] and Har-
rington and Mautz [7). When the spacing s exceeds A, this
constant-phase property is lost.

Il. THE CENTER-FED TUBULAR DIPOLE

Fig. 1 illustrates a center-fed tubular dipole antenna. This
dipole is equivalent to a monopole antenna fed via a coaxial
cable through a large ground plane. The tube has perfect con-
ductivity and infinitesimal wall thickness, and the time de-
pendence ¢“ is understood for the electromagnetic field. The
field is the sum of the incident field (E!, H*) from the mag-
netic frill and the scatteréd field from the electric surface cur-
rent on the tube. The field is independent of the angular co-
ordinate ¢, and the only nonzero field components are E,,
E,,and Hy. The scattered field may be expressed as follows:

Hy' = (jk/n) [) AKo(ra)l(p) cos (gz)dg, »<a (1)

Hy'® = —(jk/n) / Aly(1a)K(1p) cos (gz)dg, a<p (2)
(]
v =g —? 3)

where k = w\/u—e, n= \/m, I, and K, are the modified
Bessel functions, 4 is a function of g, and (p, ¢, z) denote the
coordinates in the circular cylindrical system. Except for the
conducting tube, the medium is homogeneous with parameters
u and €. The scattered ficld component E,* is continuous
across the boundary at p = a. Setting £,(a, z) = 0 on the per-
fectly conducting tube, we obtain the integral equation for
the tubular dipole:

] YAIo(ya)Ko(7a) cos (gz) dg = —E,’(a, 2), --h<z<h
(]

(4)

We multiply both sides of (4) by cos (inz/l.) and intcgrate
over the region 0 < z < A to obtain:

/ YAlo(va)Ko(1a)G, dg =V, )
(]
h
G = / cos (g2) cos (inz/1.) dz 6)
(]
A
V= / E,'(a, 2) cos (inz/L) dz )
(]

where L. = 24,
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It is convenient to express the current distribution on the
antenna in a Fourier scries as follows:

1z)= Y b cos (inz/L) 8)
!

where [ is a positive odd integer. The scattered field must sat-
isfy the boundary condition

Hy'a +, 2)— Hy*(a —, 2) = J(2) )
I(z)/(2na), ~h<:z<h

J = 10

) ' 0, h<z<oo (19

where J; denotes the sum of the electric surface-current den-
sities J, on the inner and outer surfaces of the tube. From (1),
(2), and (9),

k L3
;;/; (4/7) cos (gz) dg = J(2). (11)

We multiply both sides of (11) by cos (g'z) and integrate over
the region 0 < 2 <o to obtain

iy
A=— b:G,.
. ",k; G (12)

In (5) let us replace A with the equivalent quansity from (12).
This leads to the following system of simultaneous lincar equa-
tions:

N
Y oZu=Ve i=1,3,5-N 13)
=1
=in [T , . . _
Zu";;‘,“ ¥ To(va)Ko(Ya)G G, ds. (14)
(]

The impedance matrix Z, is symmetric. The current dis-
tribution represented by (8) is a periodic :ven function with
period 45, Since each term vanishes when 2 = h, (8) repre-
sents a current distribution which vanishes at cach end of the
tubular dipole.

Corresponding to the TEM mode in the coaxial feed cable,
let the frill in Fig. 1 have the (ollowing magnetic surface-cur-
rent density:

- —oVy,

A
' pin(b/a) : 49

where Vi denotes the generator voltage and b is the outer
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radius of the coaxial cable. For p < a, the free space field of
the magnetic frill is {8)

i jkV”

Hy' =
® " min(b/a)

f (1/7)[Ko(va) — Ko(7b)]
[4]

* Iy (1p) cos (g2) dg. (16)

From (7) and (16), the excitation voltages for the center-fed
tubular dipole are

Vi,

i= T f [Ko(ya) — Ko(vb)11o(¥a) Gidg. (17)
nin (b/ﬂ) 0
The admittance of the tubular dipole is determined as follows:

Yi1 =IOYVyy = (V1) O, by (18)
1]

Now consider the scattering problem where a plane wave
has broadside incidence on the conducting tube. The incident
field is

E, = Ege™ %% = EoJo(kp). (19)

From {7) and (19), the excitation voltages are

2h
Vi=(=1)" — EoJo(ka) (20)
in
where n = (i — 1)/2. Of course, if the cylinder has a large
radius, the higher order modes with cos (m¢) behavior cannot
be neglected.
Finally, let us consider a periodic collinear array of tubular
dipoles. As in Fig. 2, let s denote the center-to-center spacing.
Equations (7), (8), and (13) apply, and

—n <
Zy=—- E en7n210(7na)Ko(7na)GinGln 1)
nks n=¢

Ta® = (2nn/s)? —k? (22)

(23)

h
Gin= / cos (inz/L) cos (2nnz/s) dz
0

where e,, = 2 except eg = 1. When a planc wave has broadside
incidence on the array, the voltages V; are given by (20).
Equations (13) and (20)-(23) were programmed for the digital
computer. When the spacing s is less than or cqual to A, it is
found the complex Fourier coefficients by all have the same
phase angle. It follows from (8) that the phase of /(2) is inde-
pendent of z.

HI. EDGE MODE FOR THE TUBULAR DIPOLE

Let us express the current distribution on the tubular
dipole as the sum of an edge mode, a feed mode, and a Fou-
rier serics, as follows:

Kz) = 1.(2) + I(z) + X c; cos (inz/L). (24)
[
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The idea is to separate out the rapidly varying components of
the current distribution. Then the Fouricr series may converge
rapidly since it represents a smooth function. With the
moment method, one must invert the impedance matrix Z,,
to determine the Fourier cocfficients and the antenna admit-
tance. Thus any technique that reduces the size of the matrix
Z;; implies a reduction in computational expense and storage
requirements and the capabilily of solving longer dipole an-
tennas.

In the vicinity of each end of the tubular dipole, it is
known that /(z) must behave like the square root of the dis-
tance from the end [9]. Thus a suitable edge mode is

1(z) = enWT=(2/hY2 = ey 2, d cos (Inz/L)
1

25)

dp=(2/)J(n/2) (26)
where J; denotes the Bessel fonction. There is only one un-
known constant ¢, in the cdge mode.

The current function [(z) often has large slope in the vicin-
ity of the feedpoint, which in the present case is at the center
of the dipole. This component of /(2) is the same as the cur-
rent distribution Jg(z) on an infinitely long cylindrical an-
tenna. Thus a suitable feed mode is

Iyz)= lo{z) cos (mz/L) = D, f; cos (inz/L). 7N
{

The factor cos {rz/l) is included so the feed mode, like all
the other modes in (24), will vanish at the ends of Lhe dipole.
The current distnibution on the infinitely long cylinder with
magnetic-frill excitation is [8) :

27k ¥y, = [Ko('Ya)"Ko('Yb)] cos (gz) dg
lo(@)y=——— - 3. :
n1n (b/a) %o 7" Ko(ya)
(28)

An cfficient subroutine is available tor caleulating the function
Ig(2). The Fourier coufficients f; for the feed mode are caleu-
lated via numerical integration. The feed mode contains no
unknown constants.

f-rom (8), (24),(25), and (27),

bl =CI+CN(f’ +f,. (29)
In (13) we replace A with the cquivalent quantity from (29)
to obtain the tollowing system of simultancous lincar equa-
Lions:

N

E clzll' = l',"

=1

20

i=1,3, N
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though most of the constants ¢; are Fouricer cocfficients, the
last one ¢y represents the amplitude of the edge mode. The
quantities d; and f; are known constants.

In the plane wave scattering problem, it is better to declete
the feed mode. In this case, V; and V,-' are given by (20).

IV. PERIODIC COLLINEAR ARRAY OF SOLID DIPOLES

Let us consider a periodic collinear array of solid perfectly
conducting cylindrical dnpoles with flat ends, as shown in Fig.
2. The incident field (£’ Il’) is considered to be periodic also
with period s, and the source is located in the exterior region
where p >a. The field may be expressed as follows:

Bl
= (jk/m) E BOGWe)  anzi)y,  p<a (34
=0 Ydo(100)

“”@ (kfn) E 1(7"9 cos (2nmzfs), p>a
n=0 Ko( Tna

35)

Hy' = (jk/n) 2 Ep1,(ynap) cos (2nmz)s), p<a (36)
n

where z' = z — h. It is easy to verify that (34) represents a
ﬁeld with I-,, vamshmg over the flat ends of the cylinders at
= 0 and 2z’ = 2d. Equation (34) is valid only in region /
where h<z<h+2d. Of course, the ficld vanishes in the in-
terior of cach solid cylinder.
The field £ (a+, z) must vanish on the surface of the con-
ducting cylinders, and it must match E,(a—, z) over the aper-
ture between cylinders. Thus

2e
Ap = — E BiFyy — Ig(Yha)E, (37
Yu$ ¢
o
Fin = / cos (inz'/d) cos (2nnzfs) d2’, (38)
(]

The field Il¢(d+, 2) must match the field Hyla--, z) over
the aperture. this leads to
E AR (Yua)F i

= E 0y (v, a)F,y,
n 0(7:1") E I !
_984,(a)

39
e vdo(7M)

From (37) and (39) we obtain the simultancous lincas equa-
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- tions:
vi=Vvi- 2 fiZu )
=1 N
g BZy=V, i=0,1,- N 40
zll =Zu, I<N (32) Z 1%l i (40)
Zy' =2, diZ; Fi
N E 747, (33) Vl“lkz _ EnFin 40
n TnaKo(7,a)
where V; and Z;; are given by (14) and (17). As M is increased, X
the admittance converges much more rapidly with (30) than ) __Ik‘”l(%ﬂ)‘su + (2jk/s )E l(7na)FinFln’ 4>
with (13). The impedance matrix Z;;" is not symmetric. Al- eqido(va) m YK o(Yna) 42

As usual, we assume the incident field (and the Fourier coeffi-
cients £,) is known. The B, are determined from (40) by
matrix inversion or equivalent techniques. Ther the 4, are
obtained from (37). Although the details cannot be presented
here, one can then determine the current distribution and the
admittance of the solid cylindrical antenna. The aperture field
can be expressed as the sum of an edge mode plus a weli-
behaved residue with techniques analogous to those presented
for the tubular cylinder.

V. NUMERICAL RESULTS

Let us discuss first the numerical results for the tubular an-
tenna. Fig. 3 illustrates the convergence curves for the admit-
tance of a tubular dipole. M denotes the size of the matrix Z,;
(i.e., the number of simultancous linear equations) in the
moment-mcthod calculations, A dramatic improvement is to
be noted in Fig. 3 when the current distribution is represented
as the sum of the edge mode, the feed mode, and a Fourier
series. Convergence is obtained with A = 6, whereas A inust
exceed 40 when the current is represented by a Fourier series
alone.

Fig. 4 illustrates the admittance versus length for a tubular
monopole. Our calculations show excellent agreement with the
experimental measurements of Holly [10}. In these calcula-
tions accuracy was more important than computational econ-
omy. Thercfore, we used M = 10 for Fig. 4. In the infinite
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Simple rigorous expressions are developed for the fields of an electric source current distribution
that is separable in cartesian coordinates. The medium is unbounded free space, and the time-harmonic
source current exists in the slab region z, < z < z,.

INTRODUCTION

Many textbooks present the theory of separable
fields in a source-free homogeneous region.
However, they do not relate these fields to the
sources or determine the fields in the source region.
These relations and expressions are useful, for
example, in the study of propagation in periodic
media, radiation from a periodic array of soarces,
and scattering from a periodic array of metallic
or diclectric elements.

THEORY

Consider a time-harmonic electric current density
with the form

J=(f4+ 7B+ 2C)X(x)Y(»)F(2) 4]

where 4, B, and C are arbitrary constants, the
time dependence e’*’ is suppressed, F(z) is an
arbitrary function, and

X"=yX @
Y=yY &)

Primes denote derivatives, and vy, and v, are arbi-
trary complex constants. Suitable functions are

X(x) = cosh y,x, sinhy,x, e"", ™" 4)
Y(y) = coshy,y,sinhvy, y, €, e ™™ )

or linear combinations of these functions.

Let the source J exist only in the slab region
2, < z < z,. If the medium everywhere is free
space, the vector potential is given as follows:

Copyright © 1981 by the American Geophysical Union.
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e A"

4nR

A(x,y, 2) = S S S J(x',y', 2") dx' dy’ dz'

(6)

If X and Y satisfy (2) and (3), it is shown in Appendix
1 that

e
S S X(x)Y(y") FEkadd
= (@%/v,) X(x) Y(y)e "~ M
Yi+Yatvi=—ki= —w’ne ®
From (6)-(7), the vector potential is
A=(XA+5B+ IC)XYZ/(2y,) (¢)]

2(s) = S F(@2')e™" "lds' = pe™* + Qe (10)

2

( 0 z2< 2,

F(z')em  dz' z,<21<z,

P= S.. an

b1
S Fi'Ye" " d' <2

2
\ 1

( 0 2, <2

]
S F(@')e ™ d2’ z,<z2<z2
. (12)

5
S F(z')e ™ d :z<z
Wil
Z" = iZ -2y, F 13

The magnetic field intensity is found as follows:

e Pt
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H-YuxA 4,
H,=(CXY'Z- BXYZ')/(2v)) (13)
H,=(AXYZ' - CX'YZ)/(2v,) (16)
H,=(BX'YZ- AXY'Z)/@2v,) an

The electric field intensity is given by
E=(VxH-1J)/(jwe) (18)
E,={(k® +¥)AXYZ+BX'Y'Z+ CX' YZ'| D
a9
E,=[AX'Y'Z+ (k* +¥})BXYZ + CXY'2')D

(20)

E,=[AX'YZ' + BXY'Z'
+ (k* + ¥})CXYZ - 24,CXYF\D @1)
D =1/Q2jwey,) @y

In (21) the last term vanishes if z < z, or z > z,.

With the aid of (1)-(3), (8). (9), and (13), it is
easy to show that our vector potential A satisfies
the appropriate wave equation

ViA+Kk*A=-J (23)

Since our solution in (15)-(17) and (19)-(21) is
derived via (14) and (18), it is not difficult to show
that is satisfies all four of Maxwell’s differential
cquations. In Appendix 2 it is shown that it also
satisfies the required boundary conditions at z =
z,. Theradiation conditions at z— oo will be satisfied
if we choose the proper root for v, .

Theorems are available that make it possible to
use the above free-space fields even when the
medium is not free space. For example, suppose
one has a periodic array of perfectly conducting
wires surrounded by free space. It is well known
that the field will not be disturbed when the wires
are removed if the surface-current density is main-
tained in free space. Next, suppose one has a
periodic array of dielectric rods surrounded by free
space. Without disturbing the field, one may remove
the rods while maintaining the polarization-current
density J = juw(e, — €)E in free space. If the
permeability p, of the rods differs from p, then
the magnetic current density M = jo(p, — w)H
is required also.

Suppose one has a periodic array of wires or
rods in the region z, < z < z, and the surrounding
medium is free space. Then one may write a suitable

expression for the current deasity J(x. y, ) and
apply the Founer transform with respect to the
x and y variables. The resulting expression for J
will be a summation of separable current functions.
Each term will have the form of (1) with a subscript
n inserted on the quantities A, B, C, X, and Y.
Then the field of the periodic array is given by
(15)~(21) with insertion of subscripts and summa-
tions.

CONCLUSION

Simple rigorous expressions are developed for
the fields of an electric source current distribution
that is separable in cartesian coordinates. The
medium is unbounded free space, and the time-har-
monic source current exists in the slab region z,
<z<z,.

APPENDIX 1:
EVALUATION OF THE DOUBLE INTEGRAL

The double integral in (7) can be evaluated most
readily with a technique presented by Harrington
(1961]. In this method, one solves a radiation
problem by two different methods and equates the
two solutions. To apply this method, let us consider
an infinite sheet of electric surface-current density
J, = xX(x) Y(y) located on the plane surface :z
= z’ and radiating in free space, where X and Y
satisfy (2) and (3). From the boundary conditions
and symmetry considerations, H, = £ XY /2 when
z-» Z'. It is easy to deduce that

H = -(1/2)X(x)Y(»)sgn(z — 2")e ™" "1 (29)
and therefore the vector potential is
A, = XX Y(P)e ™/ (2y,) (29)

But the vector potential is also given by

4, = SS X(x)Y(y')

- kR

dx'dy’ 26
4nR 4 )

By equating these two expressions for A _, we obtain
.

An alternative derivation of (7) is available if
v, = Jf, and vy, = jg, in (2) and (3), where f, and
&, are real constants. The following expansion

e "R e i .‘)e
R

miv- v’y -2
P wi |

dfdg @n
2my,




=

Y= v 4 k! (28)

is developed by Tyras [1969). We substitute (27)
into (6), interchange the order of the integrations,
and note that

S /0 dxt = 2mB (S + 1)) 29

S elarn’ dy’ =2nd(g + g;) (0)

This procedure leads again to (7) and (8).

APPENDIX 2:
THE BOUNDARY CONDITIONS

In order to be correct, the solution presented
in (15)«21) must satisfy certain boundary conditions
at the surfaces z = z, and z = z,. For the sake
of brevity, let us consider only the boundary at
z = z,. From (13), (16), (19), and (20), the tangential
field components H, , H . E,,and E , are continuous
across this boundary if Z and Z’ are continuous.
We recognize these as the appropriate boundary
conditions for a surface that does not contain a
sheet of surface current density. From (10)-(12),
Z(z)=e™ ™' S F(2')e"" ds’

+ e S F(Z')e ™" dz’ Gy

Z'(3)= —y,e ™ S F(z' )e* dr’

2
+ yye’ S F(2')e™" dz’ 32
forz, <z< z,, and
b1
Z(z) = e S F(2')e™™ dz’ 33)
Z'(2) = —y,e ™ S F@z')en" dz’ (34)

for z > z,. If the function F(z) is well behaved
at 2 = z,, & study of (31)-(34) shows that Z and
Z’ are continuous across the boundary at z = z,.
Thus the tangential field components satisfy the
required boundary conditions. From (17) it also
follows that H, is continuous as required in the
given circumstances.

On the surface z = z,, the surface charge density
is

SEPARABLE CURRENT DISTRIBUTION 1301

p.= CXYF(z,)/(jw) (35)

The required boundary condition on the normal
component of E is

p, = eE,(z,) — €E}'(2,) (36)

where z > z, in region I and z, < z < 2, in region
II. In (21) for E,, all the terms arc continuous
except the last one. Since F(z) vanishes in region
1, it is evident that our solution does satisfy (36).

Finally, let F(z) consist of a unit impulse function
F(z) = 8(z — 2"). From (10)(12),

Z(z)=e ™t ()]
2'(2) = ~vy,sgn(z — z")e ! (38)

Thus Z is continuous across the boundary at z =
2”. From (15)<22),

H. - H!'=BXY (39)
H, - H'=-AXY (40).
E, - E!= -CX'Y/(jwe) “n
E, - E)) = ~CXY' [(jwe) 42)

where z > 2" in region I and z < 2" in region
I1. The electric surface current density at z = 2”
is

J,=(34 +yB)XY (43)

From the equivalence principle of Mayes [1958],
the electric current density J, can be replaced with
an cquivalent magnetic surface current density given
by

M, = (=£CXY' + FCX' ¥)/(jwe) * (44)

It is easy to show that (39)-(42) satisfy the required
boundary conditions at the surface z = z”, which
contains electric and magnetic surface current
densities.
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Many buried scattering objects of interest take the form of two-dimensional geometries. This in-
cludes scattering from utility lines, tunnels, and geological structures such as fault lines. Radar systems
used to detect these objects commonly use antennas that are at least comparable in size to the dep.h of
the target. Thus the target and the antenna do not satisfy far zone conditions, and the radar range
equation is not applicable. Consequently, the usual separate analyses of range, antenna, and target are
not possible. In a previous paper a method was outlined that permitted the antenna properties and the
scattering properties of a two-dimensional target to be treated separately for the case of a linear electric
or magnetic dipole source parallel to the axis of the two-dimensional scatterer. This involved com-
puting the received voltage for an antenna located at the image position, ic,, at twice the target range,
and computing the backscattered fields for an electric or magnetic line source at the position of the
transmitting antenna. This model has also been applied approximately to a video pulse radar with an
orthogonal dipole antenna system. It would also be applicable to large loop antennas quite commonly
used in geophysical explorations, as will be discussed. The primary goal of this paper is to discuss
additional scattering analyses that could be used to extend the previous results. The major thrust then
is 10 generate solutions for the scattering attenuation function (SAF), which has the form EVE' or
H*/H! where the E' (or H') are the electric (or magnetic) fields of an electric (or magnetic) line source al
the image position and the E’ (or H) are the respective scattered fields. Eigenfunction solutions have
been used to obtain the SAF for circular cylindrical gecometries to represent pipes and tunnels. Moment
method solutions have been applied to perfectly conducting wires with and without a dielectric sheath.
Moment method solutions have been applied to noncircular penetrable bodies using the polarization
currents to represent the unknowns. Such solutions were developed for a line source above dikes by
Parry and Ward (1971) and Hohman (1975) in the carly seventies. Such solutions can be made for
frequencies that include several target resonances for potential target identification. These solutions can
possibly be extended to include fault lines, joints, etc., provided their electrical properties can be
estimated by using some of the concepts involved in the hybrid geometrical theory of diffraction-
moment approach. The methods of the modificd geometrical optics could also be applied to obtain
scattered ficlds at higher frequencies. These and other potential approaches will be discussed.

INTRODUCTION

Scattering from buried objects differs from that in
free space in several significant respects. First, there is
automatically a two-layer geometry since an earth-
free space interface is present with the probes being
located at the interface or in free space. This can be
accounted for when the radiators are infinite line
sources or infinitesimal electric or magnetic (small
loops) dipoles. However, the analysis becomes more
complex for finite antenna geometries and generally
involves substantial computation time. In this paper
we consider only the scattering from lossy objects
immersed in lossy homogencous media.

Copyright 1982 by the American Geophysical Union.
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Actually, Parry and Ward [1971] partially remove
the half space in part of their analyses of the scatter-
ing from dikes. They included the half space in the
field incident on the dike but not in the fields scat-
tered from the dike. Comparison with the solution
when the half space is completely included gave vari-
ations of the order of 10%. This, of course, is trivial
in comparison to variations in gcometry for ‘real
world’ situations.

Second, losscs in the ambient medium occur as the
wave propagates through the medium and over the
target.

Third, many targets which are 1o be detected using
a threce-dimensional antenna system are in essence
two-dimensional, e.g., utility lines, tunnels, faults, and
joints. Consequently, it becomes impractical to de-
scribe the target in terms of far field concepts such as
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Fig. 1. Introducing the scattering attenuation function of a cylin-
der into the radar model.

echo area (or radar cross section) or echo width. One
definition that partially alleviates this difficult is that
of the scattering attenuation function (SAF) [Burrell
et al., 1979). This parameter will be defined in the
next section. It reduces the scattering problem to that
of a line source in the vicinity of the two-dimensional
target.

Ward [1980] has summarized the significant deve!-
opments of electromagnetic scattering analysis as it
pertains to the lossy earth. In his notation, the ap-
proach used herein reduces the three-dimensional
source two-dimensional inhomogeneity to a two-
dimensional source two-dimensional inhomogeneity.

Stoyer and Greenfield {1976] have previously
considered the three-dimensional source two-
dimensional target geometry in the presence of an
interface. However, they used a point (infinitesimal)
source and Fourier transform techniques. The ap-
proach to be introduced here makes it possible to use
a finite length source.

Pridmore [1978] also worked the three-
dimensional source three-dimensional target con-
figuration. Richmond [1978] has treated this problem
where the three-dimensional source was an infinitesi-
mal magnetic dipole and thc three-dimensional
target was a conducting sphere as modeled by a wire
grid. Actually, the wire configuration could be ar-
ranged to fit any conducting shape. It is observed
that most analytic results obtained to date in the
geophysical literature arc for scatterers in the so-
called Rayleigh region, i.e., below resonance, whercas
the results discussed herein include the resonance
region.

Most of the work at the ElectroScicnce Labora-
tory has been directed toward physically small tar-

30

gets necarer the surface at higher frequencies. The
medium in this case is a lossy dielectric in contrast to
the conducting medium used throughout the geo-
physical literaturc. Further, many of the targets of
interest are hollow cylinders, e.g., plastic pipes and
tunnels. Thus onc must be cautious in extending all
of these results to the low-frequency conducting
media. Neverthcless, if one uses such parameters as
index of refraction and impedance, then this difficulty
should be averted. There is one other significant ad-
vantage to working with shallower targets; that is the
ability to be able to measure the scattered fields and
to comparc them with computed values [Davis,
1979].

The goal of this paper is (o review the results
achicved thus far for evaluating the SAF and to dis-
cuss techniques for extending this effort. To this end,
we first discuss the means that have been used of
evaluating scattered ficlds from penetrable two-
dimensional scatterers in a lossy medium. We shall
then review bricfly the pertinent solutions for the
lossy media and finally indicate how they might be
extended to the gcometries of current interest.

The next sections of this paper focus attention on
the analyses we have used to cvaluate SAF's for lossy
media. Later sections then introduce techniques that
have been used for dilferent problems that could be
adapted to this purpose.

THE SCATTERING ATTENUATION FUNCTION
The scattering attcnuation function is defined as
SAF = E'/E' or HYH' or UYU' n

wherc U® is the scattered field from the two-
dimensional target at the line source position, U' is
the radiated field of the line source at the image posi-
tion as defined in Figure 1, and E and H represent
clectric and magnetic ficld intensities respectively.

The ficld parameter U can represent either the
electric or the magnetic ficld intensity depending on
whether the source is an electric or a magnetic line
source. It is also possible to use line dipole sources.
Hohman [1971] introduced a normalization that in-
volved the magnetic ficlds in free space, i, Ampere's
law. The normalization introduced here tends to cast
the clectrical parameters in a more usable form as we
shall soon scc.

The basic model shown in Figure | introduces a
three-dimensional antenna at the image position. If
the source antenna is also the receiving antenna, then
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the normalized received voltage is approximately
Ve = (Vi/V;)SAF 2

The ray spreading in the plane of the paper of Figure
1 is contained in the factor V. This also contains a
spreading factor in the perpendicular plane which is
canceled by the ray spreading contained in the factor
E! and is then replaced by the spreading factor in-
herent in ES. If orthogonal transmit-receive dipole
antennas are used rotated by 45°, then

Ve = § (V/Vr)SAF 3

Strictly, (3) is valid only when the scattered field has
a preferred polarization independent of the polariza-
tion of the incident field. This can be modified to
account for the case where the scattered fields are
simply different for different incident polarizations
{Burrell et al., 1979]. This model has been confirmed
by. comparison with a moment method solution
using a 1000-m-long conducting cylinder as a target.
The results for a video pulse radar agree within 0.6
dB wherc the received peak signals werc 143 dB
below the transmitted signal and the waveforms are
identical. The reader is referred to Burrell et al.
[1979].

The ratio Vg/Vy can now bc computed separately,
and there is no need to restrict the actual antenna to
cither an infinitesimal dipole or a line source.

It is apparent that the SAF’s are a function of
depth 4 and the electrical parameters of the medium.
However, these effects can be easily estimated with
reasonable accuracy without repeating the entire
analysis. Thus the SAF of a specific scatterer can be
estimated reasonably accurately (within several
decibels) as the range and electrical propertics of the
media vary.

The scattering attenuation function should not be
seriously changed if a ground-air interface is included
in the model, since it would influence the scattered
field and the image field in the same manner. Two
conditions must be met in order for the above as-
sumption to be valid. First, there is no signilicant
multiple target-interface interaction, and second, the
lateral extent of the cylinder target is sufficiently
small so that lateral waves on the surface are not
significant. This could be rclaxed to the extent that
the cxtreme rays arc not incident at the surface
beyond the critical angle.

The guidelines to follow have been developed for
the case where the pertinent scattering mechanisms
involve internal reflections. The scattered fields will

k)|
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then be proportional to the Fresnel reflection coef-
ficient.

Guideline 1. The level of the SAF in the target
resonance region is changed, as the electrical pa-
rameters of the ambient medium are changed, by the
change in the Fresnel reflection coeflicient.

Guideline 2. The changes in the electrical proper-
ties of the ambicnt medium alter the loss contained
in the SAF by an amount proportional to twice the
distance from the leading portion of the (penetrable)
target to the reference plane. This is because the ref-
erence field U' is modified by this change.

Guideline 3. As the depth d is changed, the SAF is
changed according to the approximate relation

R 1/2
UR, d) = ——
- (7+3)

where R is the radius of curvature at the first station-
ary point on the target. This is based on geometrical
optics and assumes cither that this specular scatterer
is dominant, which is usually the case for a lossy
medium, or that R « d.

These guidelines have been used for circular tun-
nels [Burrell et al., 1979] and have worked very well
for the relations of the SAF as a function of media
and depth. Thus the SAF parameter is somewhat
more genceral than it would originally have appeared
and in practice is a more useful concept than the
conventional echo width.

Finally, one observes that the interface could have
been incorporated in the model of Figure 1. There
would be no substantial difficulty in analyzing the
geometries of Figurcs 1a and 1h. However, if the an-
tennas of Figure lc arc of finite cxtent, then very
large computer running times are encountered [ Bur-
rell and Peters, 1979]. More recently, using tech-
niques developed for stripline antennas, this difficulty
has been largely eliminated {U:zunoglu et al., 1979),
but this has not been incorporated in these results.

MODAL SOLUTIONS

The sphere and the infinite cylinder represent
classic shapes in the study of electromagnetic scatter-
ing. Prior to the advent of large digital computers it
was most diflicult to evaluate numerically the scat-
tered ficlds of such lossy targets even when the ambi-
ent medium was free space. It is not surprising that,
as Parry and Ward [1971] observe. D'Yakonov
[19594, b] ‘has published a solution to scattering
from a circular cylinder and a sphere in a conducting
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Fig. 2. Comparison of scattering atienuation function E, for
an electric line source for 1-m-radius tunnel for different depths d
and conductivity o shows that the primary effect of these pa-
rameters is to change the amplitude of the curve.

half-space, and we have yet to witness numerical re-
sults for cither of these particular solutions.” Ogunade
[1981] has attempted to extend D'Yakonov's solu-
tion to evaluate the fields at the surface of the earth
using the circular cylinder as a target. However, in
his assumed form of the scattercd fields he has intro-
duced a symmetry in the angle ¢ about ¢, that is not
actually present (see his equation (21) apd his Figure
2). Even if this were corrected by introducing the
terms sin n(¢p — ¢,). the result would still not be cor-
rect except for the observation point directly above
the buried cylinder. Also, as we have already ob-
served, it is not always esscntial when considering the
scattering problem to include the half space problem.
Indeed, much valuable insight can be achieved in an
economic manner if it is not included. Modal solu-
tions for scattering from lossy circular cylinders in
lossy half space excited by a line source are retatively
straightforward to evaluate numerically using
modern digital machincs. However, the numecrical
computations become more complex when a finite
antenina system (ncither infinitc nor infinitesimal) is
introduced at the surface [Burrell and Pciers, 1979].
There have been many analyses involving infinitesi-
mal dipole sources located at the surface of a half
spacc. Many of these include reflections from multi-
ple layers in the lossy half space {Wait, 1958]. There
have been few numerical solutions involving finite-
sized antennas, particularly for the current distri-
bution and the impedance, such as a resonant dipole
at the surface of the lossy half space, primarily be-
causc of computation costs. This has been approxi-
mated by Davis {1979]. There is. however, a conti-
nued cffort to generate new techniques which will

ultimately eliminate this difficulty. Howard [1975],
for example, uses fast Fourier transform (FFT) rou-
tincs to obtain the scattered fields of a small radius
conducting cylinder immersed in a lossy half space.
There is at least one other modal solution that
should be included in this discussion.

Wair's [1959] treatment of the scattered fields
from an imperfectly conducing dike should also be
included as a modal-based solution. His approach is
a rather elegant preface to concepts now being intro-
duced in the geometrical theory of diffraction (GTD)
for the treatment of thin diclectric slabs and absorb-
ers placed on conducting surfaces. We will later
update this technique, show some newer, remarkably
accurate results, and propose some possible exten-
sions o this approach. The modal solution is appli-
cable primarily to cylindrical shapes. With current
computer technology there is no serious limitation
on the size of the cylinder that can be treated. In this
solution the incident wave is expanded in a set of
cylindrical modes, and boundary conditions are ap-
plicd to each mode individually to evaluate the coef-
ficients of the scattered cylindrical modes. Summing
the ficlds of each mode then gives the desired scat-
tercd fields.

Our recent computations have involved a number
of solutions for the SAF of circular cylinders. Some
cxamples are shown in Figures 2-4. Figure 2 gives
the SAF for 1-m-radius tunnels of different depths
and ambicnt media. It is left as an exercise to check
the guidelines for depth and the media electrical pa-
rameter dependence given carlier. Figure 3 gives
SAF's for lossy cylinders immersed in a lossy
medium. These might represent tunnels filled with
water or debris. Figures 4 and S give the SAF's for
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Fig. ). Scattering attenuation function for lossy dielectric cyl-
inders in a lossy medium for parallel clectric polarization.
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Fig. 4. Scattering attenuation function for air-filled cylinder
with a perfectly conducting wire at the tunnel floor.

air-filled cylinders with a wire. The wires might rep-
resent a rail or a power line in the tunnel. Let E,
denote the field of the line source near the dielectric
cylinder without wire. Now let £, denote the field of
a 1-A line source located within the dielectric cylin-
der at the position where we will later place the wire.
The solution for E, makes use of the addition theor-
em [Harrington, 1961]. By superposition, the field of
the exterior line source, radiating in the presence of
the dielectric cylinder with interior wire, is given by
E =E, +1E,. The current I induced on the thin
wire is determined by forcing E to vanish on the
surface of the wire. The current is assumed to be
distributed uniformly around the circumference of
the wire. Finally, Figure 6 shows the SAF for a con-
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Fig. 5. Scatiering attenvation function for air-filled cylinder
with a perfectly conducting wire at the roof of the tunnel.
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Fig. 6. Scattering attenuation function for perfectly conducting
cylinder and perpendicular polarization in refatively loss free
ground.

ducting cylinder immersed in a nearly lossless
medium. The ripple in this case is caused by the
creeping wave which is almost negligible even for this
very lossless medium.

ALTERNATE TECHNIQUES AVAILABLE FOR
SCATTERING FROM PENETRABLE
CYLINDERS

There are perhaps three additional techniques
available to evaluate scattered fields from penetrable
cylinders. These include (1) moment method or inte-
gral equation solutions, (2} optical solutions, and (3)
hybrid solutions. Each solution has its applications
and its limitations, but thcy have not been developed
at this time to their ultimate capacity for targets im-
mersed in a lossy medium.

INTEGRAL EQUATION SOLUTIONS

There are two basic approaches using integral
equations for the scattered fields of penetrable ob-
jects. One of these uses surface equivalence currents
(J =4 x H and M = E x n) [Harrington, 1961] and
requires the solution of coupled integral equations,
one for the ambient medium and the other {or the
penctrable object [Andreason, 1965]. Matching the
fields at the surface allows the unknown cocflicients
to be evaluated. This is quite similar to the Sommer-
feld analysis of the half space. The other approach
uscs the so-called vi  mc polarization currents to be
discussed later [Rhodes, 1953: Richmond, 1965,
1966]. One of the major distinctions is that in the
first case the boundary conditions are satistied at the
surface and in the second casc thcy are satisfied
throughout the volume. The choice of solution would
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be associated largely with the electrical paramelters,
size, and shape of the penetrable body, and the de-
civirn would be baxd on the smallest matrix to bhe
inverted.

For example, if a thin layer is to be treated, then
the polarization current approach would be most ap-
propriate. Alternately, if a large perturbation at an
interface is to be analyzed, then the surface current
would be more appropriate. Smaller objects or ob-
jects with a small dimension in terms of wavelength
would require a smaller matrix if the volume polari-
zation current approach is used. Since most moment
method solutions are considered low-frequency tech-
niques, then it seems appropriate to place emphasis
on the polarization current density approach. An ex-
ception to this might be a gentle perturbation or
*swell’ on an interface.

There is also an integral equation solution that has
been designated as the T matrix used originally by
Waterman [1965] for the analysis of electromagnetic
scatterers. These solutions incorporated an cxtended
boundary condition so that external to this bound-
ary, outgoing cylindrical (or spherical) waves could
be used. Mei et al. [1979] used a similar solution
except that they introduced a finit~ difference solu-
tion to find the trial functions internal to the ex-
tended boundary. Again, these types of solutions
would minimize the number of match points where
the scatterer better fits the circular or spherical ex-
tended boundary.

Next we will outline the solution for a lossy dielec-
tric of rather general cross section using the polariza-
tion current density approach.

MOMENT METHOD FOR ELECTRIC LINE SOURCE
NEAR A LOSSY DIELECTRIC CYLINDER
USING THE POLARIZATION CURRENT

APPROACH

Consider an infinite electric line source with a uni-
form time harmonic current I,. When radiating in a
homogencous medium with complex parameters p
and &, this source generates the following incident
field:

E' = —ZlompKu(yp2n 4

where # and y denote the intrinsic impedance and
propagation constants of the ambient medium and
Ko denotes the modified Bessel function. The line
source is located at (x,, y,) and is parallct with the 2
axis. The obscrver is located at (x, v). and

po= L= )’ + (5 -y )
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Now consider the electric line source radiating in the
presence of a nearby parallel diclectric cylinder. The
ficld in this case is denoted by E. where

E=FE+F (6)

Since the ficld is z-polarized, scalar notation is suit-
able. The field E° scattered by the dielectric cylinder
may be generated by an equivalent polarization cur-
rent density given by

Jey = juke, —0)E (7
radiating in the homogeneous ambient medium (ue).
The dicleetric cylinder has parameters i, and ¢,, and
it may be inhomogencous, but we assume g, = pu.
The current J, cxists only in the diclectric region
with permittivity ¢,. Since the field E is unknown, the
current, J_, is also unknown.

The scattered ficld is given by

1y
EXx, ) = ~ o j j J XY IKrp) dx' dy’ 8
where the integration extends over the cross-
sectional area of the cylinder and
p=[x-x)Y+ (,\'—_\"):]"z 9)

From (6) (8) we can derive the following integral
equation:
Ji ¥ omy C o T
|| J(x", ¥)Kol5p) dx' dy’ = EY(x, y) (10)
Jjoke,—¢)  2=n

where J = J_,. Now let us expand J in a series of
basis functions as follows:

Jxo =Y CF, (L) (n
From (10) and (11),
A5y oy
g(*[wv'_” f[ﬁ(w})hddﬂd\d\]
= E{x, ») (12)

To determine the constants C,. let us multiply (12)
by a weighting function G, (x. v} and integratc over
the cross-sectional area of the cylinder. In this
manner we obtain the following system of simulta-
ncous lincar equitions:

N

YCZp=V m=12-N (13)
L |
( I d
z...,.=”'“ Ml de, ””(.h »
]'U(l -r)
u(‘ v 'ku‘ I’) ds’ ds “4’
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Vo= H G{x, YE(x, y) ds (15

Numerical integration techniques are generally re-
quired to evaluate the integrals in (14) and (195).
Matrix inversion yields the solution to (13), and then
the scattered field is calculated via (8) and (11).

MOMENT METHOD FOR MAGNETIC LINE SOURCE
NEAR A LOSSY DIELECTRIC CYLINDER

Consider an infinite magnetic line source with uni-
form time harmonic current distribution I,. When
radiating in a homogeneous medium with parameters
# and ¢, this source generates the following incident
field:

= ylof
H = 2% Kk yp) (16)
2nn
H -
g =12 1loy=y)K,00) .
y oy 2np,

! a_li! _ _710(x—‘xl)Kl(7ps)

18
y Ox 2np, (18

The field scattered by the parallel dielectric cylinder

(or radiated by the polarization current J in a homo-
geneous ambient medium) is given by

Hyx, y) = 5”—‘ H (=YW A%, ¥)

K
—x= M,y 2 i dy (19
where
J = jore, )R, (20
From (20) and Maxwell's equations,
Jlaj(dal—e)5,=(zl—~::lgli'- 21
&g Oy
R - .
J, =jole, ~)E, = o o (22)
From (19)422),
iy — oH
H(x, 5) = %— _U‘”—d [(y—y') v
n £, ay
+(x—x) ?—'L] K)o dy’ (23)
ox p

The incident, scattered, and total fields are related as
follows:

HeH +H (24)
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From (23) and (24) we obtain the following integral
equation:

v [[—8) 2 OH
H(x,y)=H‘(X.y)+;” , [(y—y)ay,

H Ky
+(x~x') ﬁ_] Xiop) dx’ dy’ (25)
Ox p
Now let us expand the unknown function H in &
series as follows:
H(x, y) = Hx(xv }') = z C- F,,(X, }’) (26}

where the functions F, are called the basis functions.
From (25) and (26),

Uy 4l )
¥ C.Fix, y) = Hi(x, y) + o 2C. ﬂ—-—sl

éF, OF, 1 Ky(vp)
: [(y -y —] —TEaxdy@n

F ’

oy’ tx=x) ox'
To determine the consiants C,. we multiply (27) by a
weighting function G,(x, y} and integrate over the
cross-sectional area of the dielectric cylinder. This
yields the following system of simultaneous linear
equations:

Y CZp=V, m=12--N (28)

n=1
Zy= J] Ga{x, Y)F (x, y) ds— L J I I e 2 Gix, y).
2n £

: [(y -y}

oF oF] K
LR | L PR
oy’ ox’' p

V.= J. J’ G {x. y)H'(x, ) ds (30)

Equation (28) is solved by matrix inversion or equiv-
alent techniques, and then the scattered field is calcu-
lated via (23) and (26).

Figure 7 shows the scattering attenuation function
as defined in (1) for a square cylinder as obtained
with the general approach just outlined. Hohman
also made some scattered field computations from a
square conducting medium, but these did not extend
into the resonance region.

Use of the SAF of Figure 1 in the model of Figure
1 has yiclded reasonable agreement with measured
results as obtained using a video pulse radar {Davis,
1979].

INSULATED FINITE LENGTH WIRES
IN A CONDUCTING MEDIUM

Conducting finite length wires immersed in a con-
ducting medium can be readily analyzed using con-

e g o
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Fig. 7. Composite scattering function of 2-m-square air-filled
tunnel obtained by a polarization current moment method solu-
tion. £, — E|, represents the SAF for a crossed dipole antenna (scc
equation (3)).

ventional moment method techniques. One such
result has already been noted. We have also con-
sidered infinite wires immersed in a circular tunnel
using modal techniques. The solution to be discussed
here is that of an insulated finite length wire. A
coaxial-like mode is assumed where the volume po-
larization currents are placed in the dielectric shell
and surface currents are on the surface of the wire.
The electric field in the dielectric shell is assumed to
be radial yielding polarization currents

J,= — e - -27:2—,) (31
where I(l) is the current on the wire. Designating this
current in the dielectric shell as a tubular expansion
dipole, one needs to include the mutual impedance
between the nth tubular expansion dipole and the
mth filamentary dipole (in the lossy medium) in the
mutual impedance Z,,. The moment method solu-
tion then proceeds in a normal fashion. The reader is
refcrred to Richmond and Newman [1976] for further
details. This approach has becn tested by evaluating
the impedance of insulated wire antennas. A typical
examplc is shown in Figurcs 8 and 9. This same ap-
proach has becn used to find the scattered ficlds from
an insulated conducting wirc in a homogencous
medium. In this casc, we present the scattering at-
tenuation function results, as incorporated in the re-
ceived voltage at the terminals of the recciving an-
tenna shown in Figure 1. The source in this case is a
Gaussian pulse which contains a rather wide spec-

P ey A =

trum. The steps in the analysis include taking the
FFT of the transmitting pulse, evaluating the compo-
nent terms illustrated in Figure 1, and taking the
inverse FFT to obtain the received voltage wave-
forms now shown in Figure 10. The spectrum of sev-
eral of these waveforms is shown in Figure 11, where
‘tunncl length® represents the length of the insulated
buried wire.

HYBRID SOLUTIONS

Hybrid solutions have bcen used to analyze
various geometries that may not be treated by the
usual moment method solutions. They have been
used to treat the infinite conducting wedge [ Burnside
et al, 1975] and an initial solution for an infinite
dielectric wedge. They have not yet been used for the
treatment of objects immersed in a lossy medium.

The hybrid solution is a combination of a moment
method solution with another solution where the un-
known fields outside a restricted region can be rep-
resented by a field of known functional form muiti-
plicd by an unknown constant. One of the original
solutions took the form illustrated in Figure 12. The
currents on the surface of the conducting wedge out-
side the encircled region can be written in the form

PRl

ISP J L g (i x D) (32)

112

where J' =7 x H' and J' =7 x H". H' and H' are
the incident and reflected magnetic field intensities
respectively; the only unknown is the constant C.

l]rlllllllll|l1-1
e = CALCULATED

® & & MEASURED
ATOS U

I

14

o

I
|

10
271 oecectmic coateo
H DIPOLE
8 .
= L8
© 2040025
6 2640 146"

6236

| IO P P P P |

O O 02 03 04 05 06 07 08
DIPOLE LENGTH Y/,

Fig. 8. The conductance of an insulated dipole plotted versus ils
length in wavelengths.
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The surface currents inside the encircled region are
unknown and are evaluated along with the constant
C using conventional moment method techniques.
Harrington [1968] gives as an integral equation for
the total current density J:

1
J:—[M+£~VxEJJHﬂHp—yUH] 33)
L

where L is taken about the perimeter of the conduc-
ting surface. Inside the encircled region the currents
can be represented using subsectional bases. Outside
the encircled region they are represented by the GTD
currents given by (32). For the lossless media, this
will involve integrations along the surface of the form

© ik e—]lpi
f S S Hkle - #'1) dpf (34)
o 4 P

where p’ is taken along the surface of the wedge.

As Burnside et al. [1975] observe, this integration
need not be carried to oo because of the decaying
nature of the Hankel function.

Next, one can consider the case of the conducting
wedge in a lossy medium as a first step ia considering
lossy wedges immersed in a lossy medium as the ex-
ternal medium becomes lossy (jk— —a — jk); this in-
tegral becomes negligible for much smaller values of
p, and thus the soiution is simplified. If the loss is
more than marginal, then indeed one could find the
fields diffracted by the edge of the wedge without
using the hybrid approach, unless one is particularly
interested in the fields along the surface of the wedge.
Aas [1975] has used additional terms in J™ of the
form C,e ™ and Cye™*#/p3 to include the cases of
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Fig. 9. The susceptance of the insulated dipole, shown in Figure
8, plotted versus its length in wavelengths.
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Fig. 10. Signals received on a 50-m orthogonal dipole antenna
system S0 m from 300 m long, 0.1-m-radius tunnel containing a
0.01-m-radius wire on its axis. (a and b) The early time behavior
and the complete received signal respectively for a 0.5-us Gaussian
input pulse. (c-d and e-f) The signals for t-us and 2-us input
pulses respectively.

grazing incidence and also polarization parallel to
the surface.

Wu «nd Tsai [1977] have adapted this approach
for the case of a dielectric wedge. They have used

LTS S (35)

They have included only first-order geometrical
optics fields for the region far away from the tip of
the wedge, primarily because there is not yet a solu-
tion for the diffracted fields of a dielectric wedge.

At first glance, it would appear that the coupled
integral equation approach would be more suitable
for the hybrid approach since it would be more suit-
able for defining a wave on the surface of the wedge
comparable to the hybrid analysis of the conducting
wedge. They observe that the solution could be im-
proved by including multiple reflections internal to
the wedge. They also note that it would be improved
when the tip diffraction term, once its form is known,
is included.

OPTICAL SOLUTIONS

The optical solutions generally analyze scattering
using ray techniques such as conservation of cnergy
in a ray tube, plane wave refraction and reflection
cocfficients, caustics, etc.

MODIFIED GEOMETRICAL OPTICS METHOD

For example, some of the earliest solutions of this
type focused attention on the scattered ficlds of di-
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from a finite length tunnel for various tunnel lengths. The tunnel
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center.

electric spheres and cylinders [Kouyoumjian et al.,
1963; Peters et al, 1965]. Analyses of this type were
designated as the modified geometrical optics
method. Some of the ray mechanisms that were con-
sidered are illustrated in Figure 13. Ray | in Figure
13 is an externally reflected ray, ray 2 is the axial
internally reflected ray, and ray 3 represents two
nonaxial rays. One of these is shown in Figure 14
and is known as the glory ray. It has an apparent
focus or caustic located a distance p, from the sur-
face as shown. Figure 15 shows the geometry of the
stationary or rainbow ray. The analysis included the

INCIDENT
WAVE

Fig. 12.  Geometry for hybrid solution for the conducting wedge.

Fig. 13.  On the general ray path.

electrical path lengths, the caustics, and multiple in-
ternally reflected rays. Figure 16 shows the compari-
son of the approximate echo width of several cylin-
ders whose relative permittivities are 0.50 and 0.75
with those obtained from the exact solution. These
examples were chosen since they might be more rep-
resentative of a sewer pipe or a plastic gas pipe,
tunnel, etc., than other values that have also been
obtained. The analysis becomes more complex as
g, = £,/¢, shown in Figire 13 becomes large with
respect to 1. Ianda and Plonus {1969] have criticized
this approach and claimed that surface waves are
needed to complete the picture. There is one other
mechanism that is possible, a lateral (or up, over, and
down) wave. This would be applicable when the
index of refraction for the cylinder is greater than
that of the ambient medium. At any rate for ¢, =
2.56, Barrick {1968] included the following rays: (1)
externally reflected ray, (2) single-bounce axial ray,
(3) triple-bounce axial ray, (4) single-bounce glory
ray, and (5) single-bounce stationary ray. He ob-
tained reasonably good agreement between the mod-
ified geometrical optics solution and the exact solu-
tion except for raggedness in the frequency depen-
dent curves of the exact solution. He reported that

WAVE FRONT |
4

CAUSTIC

CAUSTIC
/‘/ |

Fig. 14. Wave fromt of single-bounce glory ray.
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Fig. 15a. Equiphase surfaces associated with single-bounce
stationary ray.

the addition of small losses eliminated this ragged
characteristic. Including other rays of the type listed
did not introduce such a behavior, and he attributed
it to a much higher order periodic type of trapped
mode. This is probably the lateral wave mechanism.

This type of solution has been applied to a variety
of dielectric materials where the targets are generally
circular cylinders and spheres. There is, however,
nothing that restricts it to these geometries. It could
be applied for almost any shape exclusive of caustic
regions where special techniques are needed to evalu-
ate the fields. While all analyses thus far have con-
sidered only lossless targets in a lossless medium
losses can be accounted for in terms of an attenu-
ation along the pertinent ray paths, etc. These ray
paths may lic in the ambient medium and on or
inside the scatterer. The introduction of loss may also
generate additional ray paths. Of course, reflection
coefficients, etc., will be modified. It should be noted
that such solutions would generaily be simpler since
multiple internal reflections in a lossy cylinder would
be attenuated and would reduce the number of inter-
nal rays that need be included in the solution.

GEOMETRICAL THEORY OF DIFFRACTION
SOLUTION

A more recent optical solution makes use of some
of the concepts of cdge diffraction [Burnside and
Pathak, 1981]. Consider the diffracted fields from the
edge of a conducting half plane given by

" n
or J = or J[D(s, s, ¢ — @)+ Dis, s, ¢ + ¢')] (36)
E’ E

where E' and H’ are the fields of the incident wave, D
is the diffraction coeflicient, and the geometry is
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SURFACE
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Fig. 15b. Enlarged figure about point N for the equiphase sur-
face of single-bounce stationary ray.

given in Figure 17. The incident fields are shielded at
¢ — ¢’ = n, which is called the shadow boundary.
The image (or reflected fields from the half plane)
ficlds do not exist for ¢ + ¢ = n. Thus a reflection
boundary exists at ¢ + ¢’ = n. The diffraction coef-
ficients D(s, s, ¢ — @) and D(s, s, ¢ + ¢) are inti-
mately associated with the incident and reflection
shadow boundaries respectively. The diffracted fields
given by D(s, 5", ¢ + ¢’) are proportional to the dis-
continuity of the fields at the shadow boundary (SB),
and the diffracted fields given by D(s, 5', ¢ + ¢’) are
proportional to the discontinuity at the reflection
boundary (RB).

e e+ APF ROXIMATE
—— EXACT { PARALLEL AND PERPENDICULAR
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Fig. 16. Comparison of exact and sppronimate backscatier
echo width of an inline aircular diclectric cyhinder for refative
permituivity ¢, = 0.50, 0.75.
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Fig. 17. Edge-diffracted ray geometry. RB is reflection boundary;
SB is shadow boundary.

Suppose now we permit the half planc to be thin
and penetrable. Then there is a partial reflection and
a partial transmission at the half plane as represented
by Figure 18. Now (36) takes the form

H* H

or ¢ =19 or > [(1—TDis, s, ¢ — &)

E E

+ RiDis, s, ¢ + 9] 67

CONDUCTING
HALF PLANE

R

THIN AN
DIELECTRIC
HALF PLANE

THIN DIELECTRIC
NALF PLANE

Fig. 18.  Optical boundaries for dielectric half plane.
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Fig. 19. Geometry used for GTI)-moment method (MM) com-
parison.

where (1 — T) = R represents the discontinuity of
fields at the shadow and reflection boundaries respec-
tively. This type of solution has been applied to the
case of a thin diclcctric slab. Burnside and Pathak
[1981] have calculated the far field radiated fields for
a number of two-dimensional geometries. An exam-
ple of this geometry is given in Figure 19. A typical
result is shown in Figure 20 where this GTD solution
is compared with the moment method solution.

We observe that the results obtained herein do
confirm the accuracy of the method. The fact that
therc is agreement over the cntire pattern also re-
moves the potential restriction discussed by Wait
[1959] concerning the location of the source and ob-
servation point. This is accomplished by the appro-
priate modification of the diffracted fields associated
with both the shadow and the reflection boundaries.

A significant factor here is that the scattered fields
can indeed be represented by a discrete shadow
boundary and by the same form of diffracted fields as
for the conducting shupe. If the same basic postulate
is made for penetrablc wedge gecometrics with differ-

Fig. 20. GTD-MM companson with cleciric line source using
geometry shown in Figure 19 with . - 204, D = 0084, p, 204
(Left) o, = 20 and inght) ¢, 40 .
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Fig. 21. Some reflection and shadow boundaries for a penetrable
wedge.

ent angles, it may become possible to construct solu-
tions for more general shapes. In the following para-
graphs, we outline some of the considerations that
might be used to obtain GTD type solutions to more
complex geometries. The reader is cautioned that
these are merely presented here as untested postu-
lates.

The principle limitation on the results shown in
Figure 20 is thc thickness of the slab. For thicker
slabs or for subsurface geometries that might be of
interest, the index of refraction and the angle of inci-
dence will introduce additional limitations. Consider,
for example, the geometry of Figurc 21. For this case,
it might appear that the boundary conditions are

SOURCE
ol :5."
oeoy €.q
ave,

Fig 22. Grazing incidence on the face of a penetrable wedyge,
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Fig. 23. Phase velocities of a wave along the surface of the wedge
of Figure 22.

essentially those that have already been stated and
used in (37), and indeed for diffracted ficlds in the
vicinity of the reflection boundary (where the second
term of (37) is dominant) this may represent a valid
approximation. However, for fields in the vicinity of
the shadow boundary (where the first term in (37) is
dominant) this approach is clearly erroneous. Also,
since the phase velocities of the ‘ray optical fields’ in
the two media must differ, it is impossible to satisfy
the boundary conditions along the surface by such
fields. Thus we now must introduce the additional
complication of some type of ‘trapped’ or lateral
wave field. Thus the possibility of a Zenneck type
wave [Hill and Wait, 1978, 1980] must be con-
sidered. These fields would be represented by ‘com-
plex rays.” This subject has been studied in consider-
able depth by Felson and his co-workers [Felson,
1981].

SQURCE

ng <

Fig. 24. A penetrable wedge geometry where the GTD solution
should give good results.
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Fig. 25. Suggested ray configuration for a simplistic fault geom-
etry where current GTD solution is appropriate.

Looking further at the geometry of the vertical
interface of Figure 21 as illustrated in Figure 22, we
observe that the phase velocity of the wave at the
surface on the low index of refraction side has the
appearance of a fast wave. Its phasc velocity must
have a component, not only along the vertical inter-
face but also perpendicular to it. It would conse-
quently appear as a shadow boundary as shown in
Figure 23.

The launching properties of such a field should be
studied carefully using the hybrid solutions already
discussed. Once these are adequately understood,
they would be used as a tool for studying more com-
plex geomelries.

Note also that the various boundaries are associ-
ated with different wedge surfaces. For example,
(SB), is clearly associated with the vertical suface of
Figure 21. Thus once the equivalence currents are
evaluated for the wedge, one could assume that the
equivalence currents on the vertical surface would
contribute to the fields (SB), and its associated dif-
fracted ficlds. One could further refine this model by
neglecting the optical ficlds on the vertical edge and
repeating the hybrid solution. In this manner, one
could hope to construct a solution for a diclectric
wedge in a GTD format.

In Figure 21 we recall that there now are two
shadow boundaries at different angles. From a geom-

etric optics viewpoint, there is a void between these
two boundaries. This is clearly a more complex case.
It becomes even more complex if the line source is
not in the far field since the fields of rays associated
with (SB), are not homogeneous because they are
dependent on various incidence angles at the surface.
One could make various postulates as to the form of
these diffracted fields. However, at this time, not
enough has been achieved to be realistic. Perhaps the
proper approach, barring the development of an ade-
quatc modal solution, would be to extend the hybrid
solution and seck GTD-like representations with the
appropriate uniform behavicr to represent them as
rays.

Figure 24 illustrates an example where reasonable
results might be obtained for the space designated as
1, using the approach given by Burnside. The overly
stringent requircment that 5, < n, implies that there
are no multiply reflected rays. The diffracted fields
from any internal shadow boundaries would tend to
remain inside the wedge. The external diffracted
ficlds would be those of the conducting wedge multi-
plied by the appropriate reflection coefficients. These
solutions, once developed, should prove useful for
providing building blocks to more complex geom-
ctrics. For example, Figure 25 sketches some of the
additional mechanisms that might appear in a ‘fault-
like' geometry. The rays diffracted by the upper
corner appear after reflection from the lower inter-
facc to be emanating from the image shown. Of
course, improved values are needed for the ficlds dif-
fracted by the upper corner. Evaluating the reflection
of the trapped wave also would require *additional
study.’ Thesc would probably give fields of lower
value because of loss.

CONCLUSIONS

The scattering attenuation function has been de-
fined for the scattering from two-dimensional targets
using finitc size antennas. Some results have been
prescnted for the SATF of targets in a lossy medium.
Possible extensions of existing methods for this pur-
pose have also been discussed.
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PROPAGATION OF SURFACE WAVES ON A BURIED

COAXIAL CABLE WITH PERIODIC SLOTS*

Je.H. Richmond
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Department of Electrical Engineering
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ABSTRACT

Consider a horizontal coaxial cable with periodic slots in the
outer conductor, This "leaky cable" is buried in the earth as one
component of an intruder detection system. We develop the theory for
surface-wave propagation on the cable in the presence of the planar:
air-earth interface. Numerical results are included for the phase
velocity and attenuation constant as functions of the various
parameters. 0Nata are presented for the electric field strength at the
air-earth interface, and the electric field distribution in the air

region above the buried cable.
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